We report a detailed theoretical investigation into the influence of anisotropy on the magnetic and thermodynamic properties of an octanuclear nickel phosphonate cage with butterfly-shaped molecular geometry, namely Ni8(μ3−OH)4(OMe)2(O3PR1)2(O2CtBu)6(HO2CtBu)8. To validate our exact diagonalization approach, we firstly compare results with simulations and experiment in the isotropic case. Having established concurrence, we then introduce uniaxial single-ion anisotropy and Heisenberg exchange anisotropy between interacted nickel atoms. We then examine effects of both anisotropy parameters on the magnetization process, as well as on the specific heat of the model. We predict intermediate magnetization plateaus, including zero plateau, and magnetization jumps with magnetic ground-state phase transitions at low temperature T=1 K. The magnetization plateaus are strongly dependent on both the levels of exchange anisotropy and single-ion anisotropy. Varying the former leads to change in width and magnetic position of all intermediate plateaus while they become wider upon increasing the latter. The specific heat of the model manifests a Schottky-type maximum at moderate temperature in the presence of weak magnetic fields, when the system is isotropic. The introduction of anisotropy results in substantial variations in the thermal behavior of the specific heat. Indeed, by tuning anisotropy parameters the Schottky peak convert to a double-peak temperature dependence that coincided with the magnetization jumps. We call for these theoretical predictions to be verified experimentally at low temperature.
Read full abstract