The effect of amyloid beta (Abeta), the major constituent of the Alzheimer's (AD) brain on lipid metabolism was investigated in cultured nerve cells and in a fetal rat brain model. Differentiated (NGF) and undifferentiated PC12 cells or primary cerebral cell cultures were incubated with [14C]acetate in the absence or presence of Abeta1-40. Incorporation of label into lipid species was determined after lipid extraction and TLC separation. Phosphatidylcholine (PC) and phosphatidylserine (PS) synthesis was increased by Abeta1-40, in a dose dependent manner, an effect which was more pronounced in differentiated PC12 cells. A significant proportion of radioactivity (5-6%) was released into the medium with a radioactivity distribution similar to that of the cellular lipids. Cholesterol and PC were the highest labeled medium lipids. Increasing Abeta1-40 concentration up to 0.1 microg/ml in cerebral cells but not in PC12 cells, caused a relative increase (1.5 fold) in release of PS, while that of PE decreased. Stimulation of PS release may possibly be associated with apoptotic cell death. Abeta1-40 peptide (5 microg) was administered intraperitoneally into rat fetuses (18 days gestation) along with [14C]acetate (2 microCi/fetus). After 24 h, the maternal-fetal blood supply was occluded for 20 min (ischemia) followed by 15 min reperfusion. Fetuses were killed and liver and brain tissue subjected to lipid extraction and radioactivity determination after TLC. Abeta1-40 peptide increased synthesis of different classes of lipids up to 20-40% in brain tissue compared to controls. Labeling of liver lipids was decreased by Abeta1-40 by 20-30%. A general decrease in synthesis of lipids was observed after ischemia/reperfusion. Our data suggest that Abeta1-40 peptide regulates normal lipid biosynthesis but under ischemia it compromises it. The latter finding may confirm the oxidative stress etiology in AD and suggests that Abeta1-40 modulation of lipid metabolism may have Alzheimer's pathological relevance, particularly at high peptide concentrations.
Read full abstract