Abstract

The cho1/pss mutant of Saccharomyces cerevisiae, which is auxotrophic for choline or ethanolamine because of the deficiency in phosphatidylserine synthesis, grew in the presence of 0.05 mM phosphatidylcholine (PC) with octanoic acids (diC8PC) or decanoic acids (diC10PC), but not in the presence of PC with longer acyl residues. It did not grow in the presence of the soluble hydrolytic products of PC, phosphorylcholine or glycerophosphorylcholine, at comparable concentrations. Addition of 10 mM hemicholinium-3, a choline transport inhibitor, or disruption of the CTR gene, which encodes a choline transporter, inhibited the growth of the cho1/pss mutant in the presence of choline, but not in the presence of 0.1 mM diC8PC. Under diC8PC-supported growth conditions, octanoic acid was barely detectable in the cellular phospholipid fraction, but was recovered in the culture medium as the free acid, and the phosphatidylethanolamine (PE) content was low in comparison to the choline-supported conditions. These results suggest that PCs with short acyl residues were taken up by the cho1/pss mutant and remodeled as they were used, and that PCs with short acyl residues do not inhibit conversion of PE to PC. The current results provide a new direction in the analysis of intracellular phospholipid movement and metabolism in yeast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.