The acid phosphatase activity that is increased in the spleens of patients with Gaucher's disease can be separated into two principal isoenzymes by chromatography on sulphopropyl-Sephadex. The acid phosphatase species that is resistant to inhibition by l-(+)-tartrate is retained by the cation-exchange resin while the tartrate-sensitive species passes through. We have isolated and characterized the tartrate-sensitive acid phosphatase (designated SP I) from the spleen of a patient with the adult (type 1) form of Gaucher's disease. SP I acid phosphatase, representing approximately 30 to 50% of the total acid phosphatase activity in a detergent (Triton X-100) extract of spleen tissue, has been purified approximately 400-fold to a specific activity of 48 units/mg of protein (substrate, 4-methylumbelliferyl phosphate). The final preparation of acid phosphatase contains at least two protein components—each with phosphatase activity—when analyzed by polyacrylamide gel electrophoresis at pH 8.9 or isoelectric focusing. SP I acid phosphatase exhibits a broad substrate specificity and catalyzes the hydrolysis of a variety of artificial and natural phosphate-containing compounds including p-nitrophenyl phosphate, α-naphthyl phosphate, phosphoenolpyruvate, and CMP. The enzyme is inhibited by l-(+)-tartrate, sodium fluoride, and ammonium molybdate and has the following properties: pH optimum, 4.5; K m on 4-methylumbelliferyl phosphate, 44 μ m; p I, 3.8–4.1; M r, 177,400; s 20,w, 6.8.
Read full abstract