Daphnia are keystone species of freshwater habitats used as model organisms in ecology and evolutionary biology. Their small size, wide geographic distribution, and sensitivity to chemicals make them useful as environmental sentinels in regulatory toxicology and chemical risk assessment. Biomolecular (-omic) assessments of responses to chemical toxicity, which reveal detailed molecular signatures, become more powerful when correlated with other phenotypic outcomes (such as behavioral, physiological, or histopathological) for comparative validation and regulatory relevance. However, the lack of histopathology or tissue phenotype characterization of this species presently limits our ability to assess cellular mechanisms of toxicity. Here, we address the central concept that interpreting aberrant tissue phenotypes requires a basic understanding of species normal microanatomy. We introduce the female and male DaphniaHistology Reference Atlas (DaHRA) for the baseline knowledge of Daphnia magna microanatomy. We also include developmental stages of female D. magna in the atlas. This interactive web-based resource of adult D. magna features overlaid vectorized demarcation of anatomical structures whose labels comply with an anatomical ontology created for this atlas. We demonstrate the potential utility of DaHRA for toxicological investigations by presenting aberrant phenotypes of acetaminophen-exposed D. magna. We envision DaHRA to facilitate the future integration of molecular and phenotypic data from the scientific community as we seek to understand how genes, chemicals, and environment interactions determine organismal phenotype.
Read full abstract