Abstract
Immunomodulatory variants that lead to the loss or gain of specific protein interactions often manifest only as organismal phenotypes in infectious disease. Here, we propose a network-based approach to integrate genetic variation with a structurally resolved human protein interactome network to prioritize immunomodulatory variants in COVID-19. We find that, in addition to variants that pass genome-wide significance thresholds, variants at the interface of specific protein-protein interactions, even though they do not meet genome-wide thresholds, are equally immunomodulatory. The integration of these variants with single-cell epigenomic and transcriptomic data prioritizes myeloid and Tcell subsets as the most affected by these variants across both the peripheral blood and the lung compartments. Of particular interest is a common coding variant that disrupts the OAS1-PRMT6 interaction and affects downstream interferon signaling. Critically, our framework is generalizable across infectious disease contexts and can be used to implicate immunomodulatory variants that do not meet genome-wide significance thresholds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.