Structures, kinetics, and chemical reactivities at interfaces and surfaces are key to understanding many of the fundamental scientific problems related to chemical, material, biological, and physical systems. These steady-state and dynamical properties at interfaces and surfaces require even-order techniques with time-resolution and spectral-resolution. Here, we develop fourth-order interface-/surface-specific two-dimensional electronic spectroscopy, including both two-dimensional electronic sum frequency generation (2D-ESFG) spectroscopy and two-dimensional electronic second harmonic generation (2D-ESHG) spectroscopy, for structural and dynamics studies of interfaces and surfaces. The 2D-ESFG and 2D-ESHG techniques were based on a unique laser source of broadband short-wave IR from 1200 nm to 2200 nm from a home-built optical parametric amplifier. With the broadband short-wave IR source, surface spectra cover most of the visible light region from 480 nm to 760 nm. A translating wedge-based identical pulses encoding system (TWINs) was introduced to generate a phase-locked pulse pair for coherent excitation in the 2D-ESFG and 2D-ESHG. As an example, we demonstrated surface dark states and their interactions of the surface states at p-type GaAs (001) surfaces with the 2D-ESFG and 2D-ESHG techniques. These newly developed time-resolved and interface-/surface-specific 2D spectroscopies would bring new information for structure and dynamics at interfaces and surfaces in the fields of the environment, materials, catalysis, and biology.
Read full abstract