Abstract

High even-order surface/interface specific spectroscopy has the potential to provide more structural and dynamical information about surfaces and interfaces. In this work, we developed a novel fourth-order interface-specific two-dimensional electronic sum frequency generation (2D-ESFG) for structures and dynamics at surfaces and interfaces. A translating wedge-based identical pulses encoding system (TWINs) was introduced to generate phase-locked pulse pairs for coherent pump beams in 2D-ESFG. As a proof-of-principle experiment, fourth-order 2D-ESFG spectroscopy was used to demonstrate couplings of surface states for both n-type and p-type GaAs (100). We found surface dark state within the bandgap of the GaAs in 2D-ESFG spectra, which could not be observed in one-dimensional ESFG spectra. To our best knowledge, this is a first demonstration of interface-specific two-dimensional electronic spectroscopy. The development of the 2D-ESFG spectroscopy will provide new structural probes of spectral diffusion, conformational dynamics, energy transfer, and charge transfer for surfaces and interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.