ZnS nanostructures are prominent and promising candidates of class II–IV semiconductor materials that can be prepared by sophisticated techniques. Transition of the material from bulk to nanosize brings forth drastic changes in various properties particularly the photophysical properties. In recent years research has been focused on modifying and manipulating the morphologies of ZnS nanostructures for fabricating photocatalysts, photonic devices, biolabeling agent, optical sensors, detectors, and other novel applications. This review article addresses phase evolution (theoretical modeling approach and experimental validation), morphological control, growth mechanisms based on thermodynamic considerations, surface energy driven models, kinematics, template directed growth, etc., and understanding of the photophysical properties of ZnS based on the dimension of nanostructures (zero-dimensional to three-dimensional). A broad overview is presented for various synthesis techniques from the aspect of different ...
Read full abstract