Abnormal grain growth (AGG), which is also called the secondary recrystallization, often takes place after primary recrystallization of deformed polycrystalline materials. A famous example is the evolution of the Goss texture after secondary recrystallization of Fe-3%Si steel. A selective AGG of Goss grains has remained a puzzle over 70 years in the metallurgy community since its first discovery by Goss in 1935. We suggested the sub-boundary enhanced solid-state wetting as a mechanism of selective AGG of Goss grains. According to this mechanism, if Goss grains have sub-boundaries of low energy, they have an exclusively high probability to grow by solid-state wetting along a triple junction compared with other grains without sub-boundaries. This aspect has been confirmed by Monte-Carlo and Phase Field Model simulations. The simulations showed that if the abnormally-growing grain has a high fraction of low energy boundaries with the matrix grains, it favors the sub-boundary enhanced solid-state wetting and produces many island and peninsular grains frequently observed near the growth front of abnormally-growing Goss grains. For example, the {111}<112> orientation has a S9 relationship with a Goss grain. Therefore, grains with the {111}<112> orientation provide a favorable condition for sub-boundary enhanced solid-state wetting. Three or four-sided grains with convex-inward boundaries, which are observed on a two-dimensional section of polycrystalline structures, are not shrinking but are growing, indicating that they are growing by wetting along a triple junction. These and other microstructural evidences of solid-state wetting could be observed relatively easily near the growth front of abnormally-growing Goss grains. The existence of sub-boundaries exclusively in abnormally-growing Goss grains has been experimentally confirmed. In order to understand why only Goss grains have sub-boundaries, the cold rolling process of the hot-rolled Fe-3%Si steel was analyzed by finite element method (FEM). The analysis showed that a small portion of Goss grains formed during hot rolling survives after cold rolling; the survived Goss grains have the lowest stored energy and are expected to undergo only recovery without recrystallization, producing sub-boundaries.
Read full abstract