This study investigates the dynamics of granular flows in geotechnical centrifuge models, focusing on the effects of centrifugal and Coriolis accelerations. While conventional laboratory-scale investigations often rely on Froude scaling, geotechnical centrifuge modelling offers a unique advantage in incorporating stress-dependent processes that fundamentally shape flow rheology and dynamics. Using the Discrete Element Method (DEM) and the Lattice-Boltzmann Method (LBM), we simulate the collapse of a just-saturated granular column within a rotating reference frame. The model’s accuracy is validated against expected trends and physical experiments, demonstrating its strong performance in replicating idealised collapse behaviour. Acceleration effects on both macro- and grain-scale dynamics are examined through phase front and coordination number analysis, providing insight on how centrifugal and Coriolis accelerations influence flow structure and mobility. This work enhances our understanding of granular flow dynamics in geotechnical centrifuge models by introducing an interstitial pore fluid and considering multiple factors that influence flow behaviour over a wide parameter space.Graphical abstract
Read full abstract