Ge2Sb2Te5 (GST225) thin films are used as a functional element in multilayer cells of phase change random access memory (PCRAM, PCM) and have good prospects in electrically driven tunable reflective metasurfaces and on-chip waveguide devices, including those implemented on a flexible substrate. Knowledge of the mechanical properties of GST225 thin films, their adhesion to conductive layers, and the correct choice of conductive material is critical to the reliable operation of these devices. The present work focuses on the effect of phase change on mechanical parameters such as hardness, Young's modulus and stiffness, as well as on the adhesion of GST225 thin films to various metal sublayers (Al, Ti, TiN, W, Ni). The formation of GST225 films was carried out by vacuum thermal evaporation and DC magnetron sputtering, which made it possible to study layers with different distributions of elements over the thickness.
Read full abstract