Abstract
Crystallization (set) time is a key bottleneck to achieve high-speed programming in phase change memory (PCM). Overcoming this limitation requires a deeper understanding of the solidification processes within nanoscale device configuration. This study explores crystallization dynamics in Ge2Sb2Te5 by measuring the transient resistance and power during the set process in confined PCM cells with nanosecond resolution. The transient resistance probes the phase, while the power can be used to evaluate temperature, thus uncovering details of the phase change dynamics. Our findings reveal a notable trend indicating that solidification from the melt results in faster crystallization compared with annealing the glassy state. Moreover, we observed notable differences in the solidification dynamics during set (crystallization) and reset (amorphization) pulses. Our nanosecond transient measurement methodology proves valuable in revealing crucial aspects of PCM crystallization dynamics, holding the potential to enable higher-speed programming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.