Alzheimer disease (AD) is characterized by progressive loss of memory. Synaptic loss is now the best correlate of cognitive dysfunction in patients with Alzheimer’s disease. Thus, restoration or limitation of synapse loss is a promising strategy for pharmacotherapy of AD. N–N substituted piperazines are widely used chemical compounds for drug interventions to treat different illnesses including CNS diseases such as drug abuse, mental and anxiety disorders. Piperazine derivatives are small molecules that are usually well tolerated and cross blood brain barrier (BBB). Thus, disubstituted piperazines are good tools for searching and developing novel disease-modifying drugs. Previously, we have determined the piperazine derivative, 51164, as an activator of TRPC6 in dendritic spines. We have demonstrated synaptoprotective properties of 51164 in AD mouse models. However, 51164 was not able to cross BBB. Within the current study, we identified a novel piperazine derivative, cmp2, that is structurally similar to 51164 but is able to cross BBB. Cmp2 binds central part of monomeric TRPC6 in similar way as hypeforin does. Cmp2 selectively activates TRPC6 but not structurally related TRPC3 and TRPC7. Novel piperazine derivative exhibits synaptoprotective properties in culture and slices and penetrates the BBB. In vivo study indicated cmp2 (10 mg/kg I.P.) reversed deficits in synaptic plasticity in the 5xFAD mice. Thus, we suggest that cmp2 is a novel lead compound for drug development. The mechanism of cmp2 action is based on selective TRPC6 stimulation and it is expected to treat synaptic deficiency in hippocampal neurons.