Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory loss, disorientation and gradual deterioration of intellectual ability. In the pharmacotherapy of AD, the mitochondrial protective activity of Exendin-4 in experimental studies is yet to be established though its effectiveness is demonstrated in these patients. Therefore, the mitochondria protective activity of Exendin-4 (5 μg/kg, i.p.) was investigated in hippocampus and pre-frontal cortex (PFC) of AD-like animals. The amyloid beta (Aβ) was injected through bilateral intracerebroventricular route into lateral ventricles to induce AD-like manifestations in the male rats. Exendin-4 significantly attenuated Aβ-induced memory-deficits in the Morris water maze and Y-maze test protocols. Exendin-4 significantly decreased Aβ-induced increase in the level of Aβ in both brain regions. Exendin-4 significantly increased Aβ-induced decrease in acetylcholine level and activity of cholineacetyl transferase in all brain regions. Moreover, Exendin-4 significantly decreased Aβ-induced increase in the activity of acetylcholinestrase in both the brain regions. E4 significantly increased Aβ-induced decrease in mitochondrial function, integrity, respiratory control rate and ADP/O in all brain regions. Further, Exendin-4 significantly decreased Aβ-induced increase in the mitochondrial complex enzyme-I, IV and V activities in all brain regions. Furthermore, Exendin-4 significantly increased Aβ-induced decrease in the level of phosphorylated Akt and the ratio of phosphorylated Akt to Akt in both brain regions. However, LY294002 diminished the therapeutic effects of Exendin-4 on behavioral, biochemical and molecular observations in AD-like animals. Pearson's analysis showed that the attributes of mitochondrial dysfunction (MMP and RCR) exhibited significant correlation to the loss in memory formation, level of Aβ and cholinergic dysfunction in these animals. Thus, it can be speculated that Exendin-4 may mitigate AD-like manifestations including mitochondrial toxicity perhaps through PI3K/Akt-mediated pathway in the experimental animals. Hence, Exendin-4 could be a potential therapeutic alternative candidate in the management of AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call