Global demand for phosphorus (P) is increasing, which has led to concerns over future drought and has driven efforts to recover P from wastewater streams for reuse. In this study, platinum-coated titanium electrodes were applied to the electrochemical precipitation of P from anaerobic digestion effluent that was collected from a domestic wastewater treatment plant. The influence of the electrode distance on P removal and precipitation was investigated. In addition, the influence of the electrolysis time on the chemical structure and composition of the P precipitate was evaluated from the viewpoint of utilising the P precipitate as fertiliser. Regardless of the electrode distance (10, 5 and 1 mm), PO43−, Ca2+ and Mg2+ were removed. The bulk solution pH increased during electrolysis because of the consumption of generated H+ as HCO3− transitioned to H2CO3 near the anode. A greater increase in the bulk solution pH was observed when the electrode distance was narrowed because of the enhanced H+ consumption. Narrowing the electrode distance reduced the energy consumption for P precipitation. The increase in the bulk solution pH with the narrowing electrode distance changed the dominant P precipitation pathway from onto the cathode to in the bulk solution. X-ray diffraction spectra of the precipitates showed that increasing the electrolysis time transformed amorphous P to hydroxyapatite and struvite. Most P existed in a citric acid-soluble form, which is recommended for use as a slow P release fertiliser. There were no significant changes in the citric acid-soluble P content of the precipitates with increasing electrolysis time. Therefore, increasing the electrolysis time has little influence on the suitability of the precipitate as a slow P release fertiliser.
Read full abstract