In this work, an attempt was made to evaluate the effect of pesticides on growth pattern, surface morphology, cell viability and growth regulators of nitrogen fixing soil bacterium. Pesticide tolerant Azotobacter vinelandii strain AZ6 (Accession no. MG028654) was found to tolerate maximum level of pesticide and displayed multifarious PGP activities. At higher concentrations, pesticides triggered cellular/structural damage and reduced the cell viability as clearly shown under SEM and CLSM. With increase in concentration, pesticides exhibited a significant (p < 0.05) decrease in PGP traits of strain AZ6. Among all three groups of pesticides, herbicides glyphosate and atrazine were most toxic. Kitazin, hexaconazole, metalaxyl, glyphosate, quizalofop, atrazine, fipronil, monocrotophos and imidacloprid at 2400, 1800, 1500, 900, 1200, 900, 1800, 2100 and 2700 μg mL−1, respectively, decreased the production of IAA by 19.5 ± 1.9 (61%), 18.1 ± 1.2 (64%), 36.4 ± 3.4 (28%), 13.1 ± 0.8 (74%), 15.6 ± 1.0 (69%), 7.6 ± 0.5 (83%), 11.9 ± 0.8 (76%), 24.7 ± 1.7 (51%) and 32 ± 2.3 (37%) μg mL−1, respectively, over control (50.7 ± 3.6 μg mL−1). A maximum reduction of 8.4 ± 1.2 (46%), 5.8 ± 0.6 (62%) and 4 ± 0.2 (74%) μg mL−1 in 2, 3-DHBA at 300 (1×), 600 (2×) and 900 (3×) μg mL−1 glyphosate, respectively, While, 32.8 ± 2.7 (19%), 27.2 ± 2 (33%) and 21.5 ± 1.3 (47%) μg mL−1, respectively in the production of SA was observed at 300 (1×), 600 (2×) and 900 (3×) μg mL−1 atrazine, respectively. Likewise, with increase in concentration of pesticides, decrease in P solubilization ability and change in pH of broth was detected. The order of pesticide toxicity to PSE (percent decline over control) at highest concentration was: atrazine (45) > kitazin (44) > metalaxyl (43) > monocrotophos (43) > glyphosate (41) > hexaconazole (39) > quizalofop (33) > imidacloprid (31) > fipronil (25). The present study undoubtedly suggests that even at higher doses of pesticides, A. vinelandii maintained secreting plant growth regulators and this property makes this strain agronomically important microbe for enhancing the growth of plants.
Read full abstract