The problem of combined free and forced convective magnetohydrodynamic flow in a vertical channel is analysed by taking into account the effect of viscous and ohmic dissipations. The channel walls are maintained at equal or at different constant temperatures. The velocity field and the temperature field are obtained analytically by perturbation series method and numerically by finite difference technique. The results are presented for various values of the Brinkman number and the ratio of Grashof number to the Reynolds number for both equal and different wall temperatures. Nusselt number at the walls is determined. It is found that the viscous dissipation enhances the flow reversal in the case of downward flow while it counters the flow in the case of upward flow. It is also found that the analytical and numerical solutions agree very well for small values of ε .