The crosslink-enhanced emission effect was first proposed to explore the strong luminescence of nonconjugated polymer dots possessing only either non-emissive or weakly emissive sub-luminophores. Interesting phenomena in recent research indicate such enhancement caused by extensive crosslinking appears in diverse luminescent polymers with sub-luminophores (electron-rich heteroatomic moieties) or luminophores (conjugated π domains). This enhancement can promote the emission from nonluminous to luminous, from weakly luminous to strongly luminous, and even convert the pathway of radiative transitions. The concept of the crosslink-enhanced emission effect should be updated and extended to an in-depth spatial effect, such as electron overlap and energy splitting in confined domains by effective crosslinking, more than initial immobilization. This Minireview outlines the development of the crosslink-enhanced emission effect from the perspective of the detailed classification, inherent mechanism and applicable systems. An outlook on the further exploration and application of this theory are also proposed.