Mineral materials play a pivotal in heterogeneous catalysts as active, support, or promoter components, with the oil refinery industry being one of the biggest beneficiaries. While conventional hydroprocessing catalysts have historically met the industry’s needs, the growing need to accommodate unique feedstocks, meet the increasing demand for environmentally acceptable products, obtain better product specifications, enhance selectivity for reactions to increase ratios for certain product cuts, and use more cost-effective and abundant mineral materials, has recently motivated for fresh considerations in the development of hydroprocessing catalysts. Based on periodic trends, noble metals possess the most desirable qualities, but their relative abundance in the Earth’s crust is too low to meet industry needs. They are costly and highly sensitive to sulfur poisoning. Mo and W lie in the sweet spot, but it is anticipated that they cannot meet the increasing demand. Investigations of electronic interactions of more economical and abundant metals, such as Nb, V, and Fe, with other elements and support materials have yielded a better understanding of synergistic effects that help to access noble metal-like qualities. This work contrasts conventional hydroprocessing catalysts and recently improved catalysts, detailing the chemistry considerations behind the selection of mineral materials used in the catalysts. It also explores how further manipulation of these mineral materials and synthesis approaches is driving toward more desirable properties. The work brings to the attention of the readers the challenges and opportunities for the further improvement of hydroprocessing catalysts to ensure environmental sustainability while meeting the industry’s growing needs.
Read full abstract