Abstract

As organic parts of regional systems, the development and connection of the population and public services are of great significance to the realization of regional sustainable development. As the typical development sample of regional systems in China, the development and connection of the population and public services in high-tech zones deserve more attention. This paper takes the population and public services of the typical high-tech zone in western China as its research object, and uses the entropy method and the coupling coordination degree model to measure the development level, correlation degree and effect of population and public services in the high-tech zone from 2012 to 2021. The empirical results show that: firstly, the development level of the population system in the high-tech zone shows a positive evolutionary trend in the sample period, and the population system development makes a stable contribution to the sustainable development in the high-tech zone. Secondly, the development level of the public services system in the high-tech zone shows a dynamic evolutionary trend in the sample period. The contribution of the public services system to the sustainable development in the high-tech zone is affected by the population system. Thirdly, the correlation degree between the population and public services systems in the high-tech zone is kept at a relatively high level during the sample period, and the two subsystems have a relatively close element fusion. At the same time, the relationship between the population and public services systems is optimized in the sample period. There is positive information exchange, valuable feedback and dynamic adjustment between the two subsystems. The research implication is to dialectically grasp the development and connection between regional population and public services systems under the framework of sustainable development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.