Two novel periodic mesoporous organosilica materials were synthesized with a neutral phenylene-bridged ligand, 1,4-bis(trimethoxysilylethyl)benzene, one of them using tetraethyl orthosilicate as additional silica source (PMO-TMSEB-1 and PMO-TMSEB-2). A third material was also synthesized with 1,4-bis(triethoxysilyl)benzene ligand (PMO-TESB-1) which use has scarcely been reported. The three materials were evaluated as solid-phase extraction (SPE) sorbents for the off-line extraction of a mixture of seven drugs of different nature (duloxetine, terbutaline, econazole, propranolol, verapamil, metoprolol, and betaxolol) from water samples. Subsequent simultaneous enantiomeric analysis by CE, using sulfated-β-cyclodextrin (2% w/v) dissolved in a 25 mM phosphate buffer (pH 3.0) and a voltage of −20 kV (negative polarity) was carried out. Enantiomeric resolutions ranging from 2.4 to 8.5 were obtained in an analysis time of 16 min. After optimization of SPE parameters, it was shown that using just 100 mg of PMO-TESB-1 as sorbent, a preconcentration factor of 400 with 200 mL solution was achieved, allowing recoveries between 80.5 and 103.1% (except for terbutaline), with good repeatability (% RSD = 2–8 %, n = 5). Analytical characteristics of the method were evaluated in terms of precision, linearity and accuracy with method quantitation limits between 5.6 and 21.9 μg/L. The developed method was applied to the analysis of spiked wastewater samples collected in different treatment plants, with recoveries between 73.9 and 102.9% except for econazole with recovery values ranging between 58.5 and 72.4%.
Read full abstract