Abstract

Periodic mesoporous organosilicas (PMO), with phenylene or biphenylene organic linkers, were thermally treated in flowing nitrogen atmosphere upon different conditions aiming the enhancement of their CO2 adsorption/separation properties. As-synthesized and template-extracted phenylene- and biphenylene-PMO were pyrolysed at 800 and 1200 °C. The effects of: i) the type of organic bridge; ii) the presence of nitrogen atoms; iii) the use of an acid catalyst prior to carbonization; and iv) pore size were investigated. It was found that pyrolysis promotes modifications in the physical-chemical and the textural properties of the PMO materials, being the formation of micropores one of the most notable differences. Furthermore, with the exception of biphenylene-PMO, the molecular-scale periodicity of the materials was strongly affected by the pyrolysis treatment probably as a result of SiC bond cleavage. The CO2 adsorption capacity and the selectivity for CO2/CH4 separation of all pyrolysed materials were enhanced. In general, the increase of the microporosity in the pyrolysed PMO is accompanied by an improvement of the CO2 adsorption properties with concomitant reduction of the CH4 adsorption behavior. The most interesting material for CO2/CH4 separation is the biphenylene-PMO pyrolysed at 1200 °C, with a selectivity of 9.5 at 25 °C and 500 kPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.