Perillic acid has been studied as an anticancer and antimicrobial drug. Production of perillic acid has attracted considerable attention. Meanwhile, Candida tropicalis is an unconventional diploid yeast, most significantly characterized by its ability to metabolize alkanes or fatty acids for growth and proliferation. Therefore, perillic acid’s precursor (L-limonene) in C. tropicalis was firstly synthesized by expressing a Mentha spicata L-limonene synthase gene, LS_Ms in this work. Expression of a gene which encoded for a truncated version of tLS_Ms increased the production of L-limonene with a 2.78-fold increase in the titer over C. tropicalis GJR-LS-01. Compartmentalized expression of the gene tLS_Ms inhibited the production of L-limonene in C. tropicalis compared to cytoplasmic expression. Cytoplasmic overexpression of seven precursor synthesis genes significantly enhanced the production of L-limonene in C. tropicalis compared to their compartmentalized expression (mitochondria or peroxisomes), which increased by 31.7-fold in C. tropicalis GJR-tLS-01. The L-limonene titer in C. tropicalis GJR-EW-tLS-04 overexpressing the mutant gene ERG20WW in the cytoplasm was significantly increased, 11.33-fold higher than the control. The titer of L-limonene for 60 g/L glucose was increased by 1.40-fold compared to the control. Finally, a Salvia miltiorrhiza cytochrome P450 enzyme gene CYP7176 and an Arabidopsis thaliana NADPH cytochrome P450 reductase gene CPR were heterologously expressed in C. tropicalis GJR-EW-tLS-04C for the synthesis of perillic acid, which reached a titer of 106.69 mg/L in a 5-L fermenter. This is the first report of de novo synthesis of perillic acid in engineered microorganisms. The results also showed that other chemicals may be efficiently produced in C. tropicalis.Key points• Key genes cytoplasmic expression was conducive to L-limonene production in C. tropicalis.• Perillic acid was first synthesized de novo in engineered microorganisms.• The titer of perillic acid reached 106.69 mg/L in a 5-L fermenter.
Read full abstract