Abstract
Researchers widely apply enzyme inhibition to chemicals such as pesticides, nerve gases, and anti-Alzheimer's drugs. However, application of enzyme inhibition to odorant sensors is less common because the corresponding reaction mechanisms have not yet been clarified in detail. In this study, we propose a new strategy for highly selective detection of odorant molecules by using an inhibitor-specific enzyme. As an example, we analyzed the selective interactions between acetylcholinesterase (AChE) and limonene─the major odorant of citrus and an AChE inhibitor─using molecular dynamics simulations. In these simulations, limonene was found to be captured at specific binding sites of AChE by modifying the binding site of acetylcholine (ACh), which induced inhibition of the catalytic activity of AChE toward ACh hydrolysis. We confirmed the simulation results by experiments using an ion-sensitive field-effect transistor, and the degree of inhibition of ACh hydrolysis depended on the limonene concentration. Accordingly, we quantitatively detected limonene at a detection limit of 5.7 μM. We furthermore distinguished the response signals to limonene from those to other odorants, such as pinene and perillic acid. Researchers will use our proposed odorant detection method for other odorant-enzyme combinations and applications of miniaturized odorant-sensing systems based on rapid testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.