An important task of pharmacology is to find effective agents to improve retinal microcirculation and resistance to ischemia. The purpose of the study is to pharmacologically evaluate the retinoprotective effect of 2-ethyl-3-hydroxy-6-methylpyridine nicotinate in a rat model of retinal ischemia–reperfusion. A retinal ischemia–reperfusion model was used, in which an increase in intraocular pressure (IOP) to 110 mmHg was carried out within 30 min. The retinoprotective effect of 2-ethyl-3-hydroxy-6-methylpyridine nicotinate at a dose of 3.8 mg/kg, in comparison with nicotinic acid at a dose of 2 mg/kg and emoxipine at a dose of 2 mg/kg, was estimated by the changes in the eye fundus during ophthalmoscopy, the retinal microcirculation level with laser Doppler flowmetry (LDF), and electroretinography (ERG) after 72 h of reperfusion. The use of 2-ethyl-3-hydroxy-6-methylpyridine nicotinate prevented the development of ischemic injuries in the fundus and led to an increase in the retinal microcirculation level to 747 (median) (lower and upper quartiles: 693;760) perfusion units (p = 0.0002) in comparison with the group that underwent no treatment. In the group with the studied substance, the b-wave amplitude increased significantly (p = 0.0022), and the b/a coefficient increased reliably (p = 0.0002) in comparison with the group with no treatment. Thus, 2-ethyl-3-hydroxy-6-methylpyridine nicotinate has established itself as a potential retinoprotector.
Read full abstract