Abstract

Therapeutic neoangiogenesis (TNA) holds promise as a treatment for peripheral arterial disease. Nevertheless, proper tools for in vivo pre-clinical investigation of different TNA approaches and their effects are still lacking. Here we describe a chronic ischemic hindlimb model in rats using laser Doppler quantitative evaluation of tissue perfusion. Male Wistar rats (n = 20), aged between 6–8 months, with an average weight of 287 ± 26.74 g, were used. Animals were divided into two experimental groups: group A (n = 17; hindlimb chronic ischemia model) and group B (n = 3; control). Hindlimb ischemia was induced by concomitant ligation of the right femoral and popliteal artery. Evaluation of tissue perfusion was quantified in perfusion units (PU) on a scale from 0 to 500 (500 PU = maximal detectable perfusion) by laser Doppler analysis at day 0, day 15 and day 30 after induction of ischemia. Induction of chronic ischemia in the rat hindlimb by concomitant ligation of the femoral and popliteal artery can be readily obtained but requires basic microsurgical skills. Laser Doppler analysis has shown unaltered ischemia levels throughout the study (129,17 PU ± 3.13 day 0 vs. 130,33 PU day 30 ± 3,27, p = not significant (n.s.)). We demonstrate a simple and reproducible model of chronic hindlimb ischemia in rats, with stable tissue perfusion levels that are accurately quantified using laser Doppler technology. Hence, this model can represent a valid tool for further studies involving therapeutic neoangiogenesis.

Highlights

  • Peripheral arterial disease (PAD) represents a major health problem

  • Three animals died in the postoperative period and one was excluded due to the self-mutilation phenomenon of the ischemic limb

  • Data shown as mean ± standard deviation (SD)

Read more

Summary

Introduction

Health Organization (WHO), mortality among patients suffering from this disease is over 20% It represents the main cause of major amputations in over 38% of patients within three years of diagnosis [1]. These results are due to the lack of effective treatments, especially in critically ischemic limbs which have evolved beyond revascularization. For this class of patients, major amputation remains the only therapeutic option able to improve clinical symptoms and save the patient’s life [2,3,4].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call