This study investigates the synthesis of flat sheet asymmetric Polysulfone (PSF) membranes using the Non-Solvent Induced Phase Separation (NIPS) method, enhanced by incorporating Deep Eutectic Solvents (DES) composed of Choline Chloride (ChCl) and DL-Malic Acid (MA). The research explores the individual and combined effects of ChCl and MA on membrane morphology and performance. Comprehensive characterization techniques, including Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy-Universal Attenuated Total Reflectance (FTIR-UATR), and Atomic Force Microscopy (AFM), were employed to analyze the structural and surface properties of the membranes. Key performance metrics such as Pure Water Permeability (PWP), protein and dye rejection, fouling behavior, porosity, surface hydrophilicity, and mechanical strength were evaluated. Results demonstrated that integrating DES into the PSF matrix significantly improved membrane properties. The 3% DES membrane exhibited the highest Pure Water Permeability (PWP) of 186.82 L/m2h/bar, the lowest water contact angle of 68.8°, and optimal balance in surface roughness parameters, leading to superior antifouling properties with high flux recovery ratio (FRR) and balanced reversible (Rr) and irreversible fouling (Rir) components. The ChCl (HBA) membrane displayed a notable PWP of 121.62 L/m2h/bar, large pore sizes (42.72 nm), and moderate surface roughness (Ra of 3.32 nm). In contrast, the MA (HBD) membrane demonstrated the highest hydrophilicity with the lowest contact angle (70.7°) and a compact, robust structure, despite its smallest pore sizes and lack of permeability. The findings underscore the synergistic effect of DES formation in the membrane, improving overall performance for ultrafiltration applications. This study provides valuable insights into the distinct roles of ChCl as an HBA and MA as an HBD in DES-modified PSF membranes, revealing their individual contributions and the importance of optimizing DES components and concentrations for specific filtration applications.