Abstract

The effect of amphiphilic block copolymer polyethylene glycol (PEG)-polypropylene glycol (PPG)-PEG concentration in the polyphenylsulfone (PPSU) casting solution and coagulation bath temperature (CBT) on the structure, separation, and antifouling performance of PPSU ultrafiltration membranes was studied for the first time. According to the phase diagram obtained, PPSU/PEG-PPG-PEG/N-methyl-2-pyrrolidone (NMP) systems are characterized by a narrow miscibility gap. It was found that 20 wt.% PPSU solutions in NMP with the addition of 5-15 wt.% of PEG-PPG-PEG block copolymer feature upper critical solution temperature, gel point, and lower critical solution temperature. Membrane composition and structure were studied by Fourier-transform infrared spectroscopy, scanning electron and atomic force microscopies, and water contact angle measurements. The addition of PEG-PPG-PPG to the PPSU casting solution was found to increase the hydrophilicity of the membrane surface (water contact angle decreased from 78° for the reference PPSU membrane down to 50° for 20 wt.%PPSU/15 wt.% PEG-PPG-PEG membrane). It was revealed that the pure water flux increased with the rise of CBT from 18-20 L·m-2·h-1 for the reference PPSU membrane up to 38-140 L·m-2·h-1 for 20 wt.% PPSU/10-15 wt.% PEG-PPG-PEG membranes. However, the opposite trend was observed for 20 wt.% PPSU/5-7 wt.% PEG-PPG-PEG membranes: pure water flux decreased with an increase in CBT. This is due to the differences in the mechanism of phase separation (non-solvent-induced phase separation (NIPS) or a combination of NIPS and temperature-induced phase separation (TIPS)). It was shown that 20 wt.% PPSU/10 wt.% PEG-PPG-PEG membranes were characterized by significantly higher antifouling performance (FRR-81-89%, DRr-26-32%, DRir-10-20%, DT-33-45%) during the ultrafiltration of bovine serum albumin solutions compared to the reference PPSU membrane prepared at different CBTs (FRR-29-38%, DRr-6-14%, DRir-74-89%, DT-88-94%).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.