Ultrasound is the most widely used medical imaging modality worldwide. It is abundant, extremely safe, portable, and inexpensive. In this review, we consider some of the current development trends for ultrasound imaging, which build upon its current strength and the popularity it experiences among medical imaging professional users.Ultrasound has rapidly expanded beyond traditional radiology departments and cardiology practices. Computing power and data processing capabilities of commonly available electronics put ultrasound systems in a lab coat pocket or on a user's mobile phone. Taking advantage of new contributions and discoveries in ultrasound physics, signal processing algorithms, and electronics, the performance of ultrasound systems and transducers have progressed in terms of them becoming smaller, with higher imaging performance, and having lower cost. Ultrasound operates in real time, now at ultrafast speeds; kilohertz frame rates are already achieved by many systems.Ultrasound has progressed beyond anatomical imaging and monitoring blood flow in large vessels. With clinical approval of ultrasound contrast agents (gas-filled microbubbles) that are administered in the bloodstream, tissue perfusion studies are now routine. Through the use of modern ultrasound pulse sequences, individual microbubbles, with subpicogram mass, can be detected and observed in real time, many centimeters deep in the body. Ultrasound imaging has broken the wavelength barrier; by tracking positions of microbubbles within the vasculature, superresolution imaging has been made possible. Ultrasound can now trace the smallest vessels and capillaries, and obtain blood velocity data in those vessels.Molecular ultrasound imaging has now moved closer to clinic; the use of microbubbles with a specific affinity to endothelial biomarkers allows selective accumulation and retention of ultrasound contrast in the areas of ischemic injury, inflammation, or neoangiogenesis. This will aid in noninvasive molecular imaging and may provide additional help with real-time guidance of biopsy, surgery, and ablation procedures.The ultrasound field can be tightly focused inside the body, many centimeters deep, with millimeter precision, and ablate lesions by energy deposition, with thermal or mechanical bioeffects. Some of such treatments are already in clinical use, with more indications progressing through the clinical trial stage. In conjunction with intravascular microbubbles, focused ultrasound can be used for tissue-specific drug delivery; localized triggered release of sequestered drugs from particles in the bloodstream may take time to get to clinic. A combination of intravascular microbubbles with circulating drug and low-power ultrasound allows transient opening of vascular endothelial barriers, including blood-brain barrier; this approach has reached clinical trial stage. Therefore, the drugs that normally would not be getting to the target tissue in the brain will now have an opportunity to produce therapeutic efficacy.Overall, medical ultrasound is developing at a brisk rate, even in an environment where other imaging modalities are also advancing rapidly and may be considered more lucrative. With all the current advances that we discuss, and many more to come, ultrasound may help solve many problems that modern medicine is facing.
Read full abstract