BackgroundPower output considers all movement aspects of the game of football and could have meaningful impact for teams. Purpose & methodsTo assess inter-reliability of ten power meters designed for running; and as a descriptor of individual and team performance during a five-a-side football match. The work aimed to assess inter-device reliability of running power-meters combined with data analysis from intermittent running, along with descriptives of player work rate, gait and team performance during a small-sided game of football. Methods10 different running power meters inter-reliability were on a treadmill at 8, 10, 12, and 16 km h−1 for 60 s in a random order. Football players (N = 10) performed the Yo-Yo ET1 with the running power meters to determine participants’ endurance capability, while assessing the ability to record metrics of gait and power output during intermittent running. Following a period of 7-days participants took part in a 20 min small-sided game of football wearing the running power meters to provide descriptors of work and gait. ResultsGood inter-device reliability for the power meters (CV 1.67, range 1.51–1.94 %) during continuous treadmill running were found. Overall mean ± SD results for Yo-Yo ET1 power output 263 ± 36W, power:weight 3.59 ± 0.34W∙kg−1 significantly (p < 0.05) increased with successive stages, while ground-contact time 234 ± 17 ms, and vertical oscillation 90.7 ± 27 mm did not change (p > 0.05).Descriptive analysis of the small-sided game presented mean ± SD absolute and relative power outputs of 148 ± 44W and 1.98 ± 0.53W∙kg−1, equating to 54 ± 21 %Wmax and 74 ± 5%HRmax. Characteristics of gait included cadence 125 ± 22 rpm, ground contact time 266 ± 19 ms, and vertical oscillation 76.7 ± 7 mm. The winning team worked relatively harder than the losing team (53.3 ± 0.7 %Wmax vs 46.7 ± 0.4 %Wmax, p < 0.0001) with more time (398 s vs 141 s) spent above 70 %Wmax. SignificanceAs such, the use of a running power-meter is a useful tool for comparing work rate and aspects of gait between team members while more research is required to investigate relative work rate (%Wmax) within the field.
Read full abstract