Cu2MoSnS4 (CCTS) is well suited as the absorption layer for solar cell due to its high absorption coefficient, suitable optical bandgap, and good stability. In this study, a novel CCTS-based solar cell with the structure of FTO/ZnO:Al/Ag2S/CCTS/Cu2O/C was proposed by setting Cu2O as the hole transport layer (HTL) to boost the photovoltaic (PV) efficiency. A comparative numerical study of its PV performance with that of the reference counterpart was performed by employing the software SCAPS, which demonstrates its obvious advantage. It was also numerically optimized by tuning the geometry and optoelectronic parameters. The optimized power conversion efficiency (PCE) was revealed to reach 26.27 %, getting 135 % improvement compared with that of the reference counterpart. It demonstrates that the proposed CCTS heterojunction solar cell with Cu2O as the HTL boosts the efficiency of CCTS-based solar cells and provide new clues for future CCTS solar cell design and application.
Read full abstract