Forest fires result in severe disaster, causing significant ecological damage and substantial economic losses. Flames and smoke represent the predominant characteristics of forest fires. However, these flames and smoke often exhibit irregular shapes, rendering them susceptible to erroneous positive or negative identifications, consequently compromising the overall performance of detection systems. To enhance the average precision and recall rates of detection, this paper introduces an enhanced iteration of the You Only Look Once version 5 (YOLOv5) algorithm. This advanced algorithm aims to achieve more effective fire detection. First, we use Switchable Atrous Convolution (SAC) in the backbone network of the traditional YOLOv5 to enhance the capture of a larger receptive field. Then, we introduce Polarized Self-Attention (PSA) to improve the modeling of long-range dependencies. Finally, we incorporate Soft Non-Maximum Suppression (Soft-NMS) to address issues related to missed detections and repeated detections of flames and smoke by the algorithm. Among the plethora of models explored, our proposed algorithm achieves a 2.0% improvement in mean Average Precision@0.5 (mAP50) and a 3.1% enhancement in Recall when compared with the YOLOv5 algorithm. The integration of SAC, PSA, and Soft-NMS significantly enhances the precision and efficiency of the detection algorithm. Moreover, the comprehensive algorithm proposed here can identify and detect key changes in various monitoring scenarios.
Read full abstract