Our experience with the natural world, as composed of ordered entities, implies that perception captures relationships between image parts. For instance, regularities in the visual scene are rapidly identified by our visual system. Defining the regularities that govern perception is a basic, unresolved issue in neuroscience. Mathematically, perfect regularities are represented by symmetry (perfect order). The transition from ordered configurations to completely random ones has been extensively studied in statistical physics, where the amount of order is characterized by a symmetry-specific order parameter. Here we applied tools from statistical physics to study order detection in humans. Different sets of visual textures, parameterized by the thermodynamic temperature in the Boltzmann distribution, were designed. We investigated how much order is required in a visual texture for it to be discriminated from random noise. The performance of human observers was compared to Ideal and Order observers (based on the order parameter). The results indicated a high consistency in performance across human observers, much below that of the Ideal observer, but well-approximated by the Order observer. Overall, we provide a novel quantitative paradigm to address order perception. Our findings, based on this paradigm, suggest that the statistical physics formalism of order captures regularities to which the human visual system is sensitive. An additional analysis revealed that some order perception properties are captured by traditional texture discrimination models according to which discrimination is based on integrated energy within maps of oriented linear filters.
Read full abstract