Context The value of milk components is increasingly recognised for human health benefits (e.g. omega-3 fatty acids, FA), or indicators of nutrient-use efficiency for both animal and environmental benefits (e.g. milk urea, MU). Aims The study explored whether inclusion of lucerne (Medicago sativa L.) in a perennial ryegrass and white clover (Lolium perenne L. and Trifolium repens L, PRW)-based diet affects milk production, MU concentration, and milk FA composition of dairy cows during mid-lactation. Methods Thirty-two cows, balanced for milk production (26.1 ± 3.03 kg/cow), MU (16.6 ± 2.84 mg/dL), and days in milk (94 ± 7 days), were evenly allocated into eight groups of four. Groups were then randomly assigned one of two dietary treatments, namely, PRW only (control), and PRW plus lucerne (lucerne). During an 8-day adaptation, control cows were fed a fresh allocation after each milking at 08:30 hours and 16:00 hours to provide 25 kg/cow.day DM of fresh PRW herbage above a target post-grazing height of 4.5 cm height. Cows on lucerne were allocated 10 kg DM of fresh lucerne at 08:30 hours, and 15 kg DM of fresh PRW at 16:00 hours. Apparent nutrient intakes and milk composition were determined on Days 9 and 10 of the study. Key results Diet treatment did not significantly alter DM or metabolisable energy intake, milk production, or milk fat and protein percentage. However, compared with control cows, nitrogen and linoleic acid (LA) intake increased, and soluble carbohydrate, neutral detergent fibre, and alpha linoleic acid (ALA) intake decreased for cows fed lucerne. Milk urea increased by 43% for lucerne compared with control cows (22.4 vs 15.7 ± 1.43 mg/dL, P < 0.001). Cows grazing lucerne produced milk with a higher concentration of LA and ALA than did the control cows. Increases in milk LA from grazing lucerne were congruent with improvement in intake of the FA from the diet, whereas increases in ALA occurred despite the corresponding lower dietary intake. Conclusion Supplementing a pasture diet with lucerne increased MU and FA. Implications Lucerne has the potential to enhance dietary protein supply during periods of deficiency and increase the supply of functional FA in the milk of grazing dairy cattle.
Read full abstract