There has been recent interest in designing smart diagnostic or therapeutic self-assembling peptide or polymeric materials that can selectively undergo morphological transitions to accumulate at a disease site in response to specific stimuli. Developing approaches to probe these self-assembly transitions in environments that accurately amalgamate the diverse plethora of proteins, biomolecules, and salts of blood is essential for creating systems that function in vivo. Here, we have developed a fluorescence anisotropy approach to probe the pH-dependent self-assembly transition of peptide amphiphile (PA) molecules that transform from spherical micelles at pH 7.4 to nanofibers under more acidic pH's in blood serum. By mixing small concentrations of a Ru(bipy)3(2+)-tagged PA with a Gd(DO3A)-tagged PA having the same lipid-peptide sequence, we showed that the pH dependence of self-assembly is minimally affected and can be monitored in mouse blood serum. These PA vehicles can be designed to transition from spherical micelles to nanofibers in the pH range 7.0-7.4 in pure serum. In contrast to the typical notion of serum albumin absorbing isolated surfactant molecules and disrupting self-assembly, our experiments showed that albumin does not bind these anionic PAs and instead promotes nanofibers due to a molecular crowding effect. Finally, we created a medium that replicates the transition pH in serum to within 0.08 pH units and allows probing self-assembly behavior using conventional spectroscopic techniques without conflicting protein signals, thus simplifying the development pathway from test tube to in vivo experimentation for stimuli-responsive materials.
Read full abstract