This paper describes a path model for the analysis of phenotypic selection upon continuous morphological characters. The path-analysis model assumes that selection occurs on unmeasured general size and shape allometry factors that summarize linear relations among sets of ontogenetically, phylogenetically, or functionally related traits. An unmeasured factor for general size is considered the only aspect of morphometric covariance matrices for which there is an a priori biological explanation. Consequently, selection coefficients are derived for each measured character by holding constant only a general size factor, rather than by using multiple regression to adjust for the full covariance matrix. Fitness is treated as an unmeasured factor with loadings, representing directional selection coefficients, computed as the covariances of the size-adjusted characters with the measured fitness indicator. The magnitudes and signs of the selection coefficients, combined with biological insight, may suggest hypotheses of selection on one or more shape allometry factors. Hypotheses of selection on general size and shape allometry factors are evaluated through cycles of measurement, analysis, and experimentation, designed to refine the path diagram depicting the covariances among the measured characters, the measured indicator of fitness, and unmeasured factors for morphology and fitness. The path-analysis and multiple-regression models were applied to data from remeasurement of Lande and Arnold's (1983) pentatomid bugs and to Bumpus's (1899) data on house sparrows. The path analysis suggested the hypothesis that variation in bug survivorship was an expression of directional selection on wing loading. Bumpus's data are consistent with a hypothesis of stabilizing selection on general size in females and directional selection for small wing size relative to body size in males.
Read full abstract