Spina bifida (SB) is caused by incomplete neural tube closure and results in multiple impairments, including muscle weakness. The severity of muscle weakness depends on the neurologic lesion level. Though typically symmetric, there can be asymmetries in neurologic lesion level, motor strength, skeletal structures, and body composition that affect patients’ gait and function. Using body segment and joint motion obtained through 3D computerized motion analysis, we evaluated asymmetry and range of motion at the hip, pelvis, and trunk in the frontal and transverse planes during gait in 57 ambulatory children with SB and 48 typically developing controls. Asymmetry and range of hip, pelvis, and trunk motion in the frontal and transverse planes were significantly greater for patients with mid-lumbar and higher level lesions compared with those having sacral/low-lumbar level lesions and controls without disability (p ≤ 0.01). Crutch use decreased asymmetry of trunk rotation in mid-lumbar level patients from 10.5° to 2.6° (p ≤ 0.01). Patients with asymmetric involvement (sacral level on one side and L3-4 on the other) functioned similarly to sacral level patients, suggesting that they may be better categorized using their stronger side rather than their weaker side as is traditional. The information gained from this study may be useful to clinicians when assessing bracing and assistive device needs for patients with asymmetric SB involvement.
Read full abstract