Pedestrians are increasingly exposed to slow-onset disasters (SLODs), such as air pollution and increasing temperatures in urban built environments (BEs). Pedestrians also face risks that arise from the combination of the BE features, the effects of SLODs on the microclimate, their own characteristics (e.g., health and ability), and the way they move and behave in indoor and outdoor BE areas. Thus, the effectiveness of sustainable risk-mitigation solutions for the health of the exposed pedestrians should be defined by considering the overlapping of such factors in critical operational scenarios in which such emergency conditions can appear. This work provides an innovative method to define a BE-oriented pedestrian risk index through a dynamic meso-scale approach that considers the daily variation of risk conditions. The method is ensured by a quick-to-apply approach, which also takes advantage of open-source repositories and tools to collect and manage input data, without the need for time-consuming in situ surveys. The resulting risk conditions are represented through meso-scale maps, which highlight the risk differences between BEs by focusing on their open spaces as fundamental parts of the urban road network. The method is applied to a significant case study (in Milan, Italy). The results demonstrate the ability of the approach to identify key input scenarios for risk assessment and mapping. The proposed methodology can: (1) provide insights for simulation activities in critical BE conditions, thanks to the identification of critical daily conditions for each of the factors and for single and multiple risks and (2) support the development of design and regeneration strategies in SLOD-prone urban BEs, as well as the identification of priority areas in the urban BE.