Fe2−xCuxZr2−xWxO7 (x: 0, 0.05, 0.015) nanoparticles were synthesized following the Pechini method and characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS) measurements to be used as photocatalysts in colored water remediation. All of the prepared materials were crystallized in a cubic fluorite phase as the major phase. The band gap was reduced upon doping with W6+ and Cu2+ from 1.96 eV to 1.47 eV for Fe1.85Cu0.15Zr1.85W0.15O7. Carbol fuchsin (CF) dye was used to determine the photocatalytic degradation efficiency of the prepared catalysts. Degradation efficiency was directly proportional to the dopant’s concentration. Complete removal of 20 mg/L CF was achieved under optimal conditions (pH 9, and catalyst loading of 1.5 g/L) using Fe1.85Cu0.15Zr1.85W0.15O7. The degradation rate followed pseudo-first-order kinetics. The reusability for photocatalysts was tested five times, decreasing its efficiency by 4% after the fifth cycle, which indicates that the prepared Fe1.85Cu0.15Zr1.85W0.15O7 photocatalyst is a promising novel photocatalyst due to its superior efficiency in dye photodegradation.
Read full abstract