Abstract

The search for efficient photonic materials for laser action has grown since 1960, after the invention of the ruby laser. Among the elements that exhibit stimulated emission, Nd3+ has received great attention for use in conventional or random lasers. Several host matrices have been developed for lanthanides ions, and aluminum borates (as YAl3(BO3)4, YAB) have proven to be excellent laser hosts due to their physicochemical properties. YAB can be synthesized by various routes, including flux methods, the Pechini method, and the sol–gel methodology. We report a new synthesis route to prepare Y1-xNdxAl3(BO3)4 micron-sized crystals, x = 0.1, 0.2, 0.4, 0.6, or 0.8, on the basis of the urea precipitation method. Structural characterization confirmed that all the particulate samples have trigonal symmetry with hexagonal space group. Powder X-Ray Diffraction (PXRD), High-Resolution Transmission Electron Microscopy (HRTEM), and Selected Area Electron Diffraction (SAED) showed that the particles are well crystallized. Photoluminescence studies revealed that Nd3+ replaces Y3+ in the YAB host matrix. Stimulated emission leading to random lasing in the Nd3+:YAB powder is demonstrated, which also opens the possibilities of its use as efficient materials for superluminescent sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.