Abstract
Nanoparticles of titanium dioxide ( TiO 2) doped with 5 at.% Sc 3+ ions were synthesized using the sol–gel method and calcined at 500°C to obtain better anatase phase. The crystal structures of the doped TiO 2 nanoparticles were characterized by X-ray powder diffraction (XRD), Raman, UV-vis, FT-IR spectroscopy, high resolution transmission electron microscopy (HRTEM) and selected-area electron diffraction (SAED). XRD patterns and Raman spectra of TiO 2 + 5 at.% Sc -500°C show the anatase phase and the average particle size of the sample calculated from XRD patterns was determined as 5.9 nm. Well-resolved rings of SAED of TiO 2 doped with Sc 3+ ions are easily indexed to those from XRD pattern. HRTEM shows the well-defined lattice fringes and the lattice spacing measured from HRTEM is 0.33 nm, which is in well agreement with the distance between the (101) planes in anatase TiO 2. Energy-dispersive X-ray (EDX) spectrum of the doped TiO 2 confirms the presence of Sc element in the TiO 2 matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.