We prove a novel, tight lower bound for the norm in L2[0,T]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{L}^2[0,T]$$\\end{document} of the Caputo fractional derivative. It is based on continuous linear functionals, Peano kernels, and the Gaussian hypergeometric function.