Exercise is able to induce atrial remodeling in top-level athletes. However, evidence is mainly limited to men and based on cross-sectional studies. The aim of this prospective, longitudinal study was to investigate whether exercise is able to influence left and right atrial morphology and function also in female athletes. :ETHODS AND RESULTS- Two-dimensional echocardiography was performed before season and after 16 weeks of intensive training in 24 top-level female athletes. Left and right atrial myocardial deformation was assessed by two-dimensional speckle-tracking echocardiography. Left atrial volume index (24.0±3.6 versus 26.7±6.9 mL/m(2); P<0.001) and right atrial volume index (15.66±3.09 versus 20.47±4.82 mL/m(2); P<0.001) significantly increased after training in female athletes. Left atrial global peak atrial longitudinal strain and peak atrial contraction strain significantly decreased after training in female athletes (43.9±9.5% versus 39.8±6.5%; P<0.05 and 15.5±4.0% versus 13.9±4.0%; P<0.05, respectively). Right atrial peak atrial longitudinal strain and peak atrial contraction strain showed a similar, although non-significant decrease (42.8±10.6% versus 39.3±8.3%; 15.6±5.6% versus 13.1±6.1%, respectively). Neither biventricular E/e' ratio nor biatrial stiffness changed after training, suggesting that biatrial remodeling occurs in a model of volume rather than pressure overload. Exercise is able to induce biatrial morphological and functional changes in female athletes. Biatrial enlargement, with normal filling pressures and low atrial stiffness, is a typical feature of the heart of female athletes. These findings should be interpreted as physiological adaptations to exercise and should be considered in the differential diagnosis with cardiomyopathies.
Read full abstract