Osteoporosis, defined as a systemic skeletal disease, is characterized by increased bone fragility and fracture risk. Studies have shown that dysregulation of the functions of miRNAs or the mechanisms they mediate may be an important pathological factor in bone degeneration. Therefore, the aim of the study was to determine the role of miRNAs, which are thought to play a role in bone metabolism, in osteoporosis. The study included 48 patients who were diagnosed with osteoporosis according to the results of a bone mineral density assessment by quantitative computed tomography and 36 healthy individuals. MiRNAs from plasma samples obtained from blood samples taken into ethylenediaminetetraacetic acid (EDTA) tubes were isolated with the miRNA isolation kit and converted to cDNA. Expression analysis of miR-21-5p, miR-34a-5p, miR-210, miR-122-5p, miR-125b-5p, miR-133a, miR-143-3p, miR-146a, miR-155-5p, and miR-223 was performed on the real-time PCR (RT-PCR) device. When miRNA expression levels in the patient group were compared with the control group, all miRNAs were found to be downregulated in the patients. When fold changes in expression levels in the patient group were examined, significant differences were found in miR-21-5p, miR-133a, mir143-3p, miR-210, and miR-223. In the receiver operating curve analysis, area under the curve=0.882 for the combination of miR-34, miR-125, miR-133, and miR-210. In this study, it was determined that the combined effects of miRNAs, as well as their single effects, were effective in the development of osteoporosis. Therefore, a miRNA panel to be created can make a significant contribution to the development of novel diagnostic and treatment approaches for this disease.