In a Smart Home wireless module, the antenna generally occupies one-third of the total circuit advances in the Internet of Things (IoTs). Dipole antenna comes in various shapes, but the planar antenna is the most suitable and attractive design for the IoTs application in Smart Homes because it is smaller in size and has a thin profile, making it suitable for mounting on portable equipment. In this research, two antennae, Meandered Dipole and Wideband Planar Antenna, were designed using Advance Design System (ADS) software on a PCB size of 18.8 mm × 43.2 mm, FR4 substrate with 4.6 dielectric constant and 0.8 mm thickness using copper metal as the conducting element. The transmission line has designed width of 1.25 mm, resulting in a typical line impedance of 50 Ω. A comparison of the analysis of simulation and measurement results from feeding port 1 of the Meandered PIFA Antenna shows a better performance of 95.43% efficiency with a gain of 2.54391dBi and a return loss of −24.49 dB at resonant frequency of 2.4 GHz than that from feeding port 2 whose efficiency was only 73.99%. Whereas, the wideband planar antenna shows an average bandwidth of 93.91% from 1.3 to 2.4 GHz. This range covers the GPS applications, the 2.4 GHz ISM band, and the general WCDMA and the LTE 3GPP bands useable for smart home and IoT applications. The proposed antenna provides low power operation, extended range and compact, cost-effective designs to support vendor's customers, and make quality of life smarter and more economical with the use of the smart home device.