Extraordinarily high Pb content in K-feldspar and plagioclase has been found contiguous to monazite in two occurrences in the ultrahigh-temperature Napier Complex of Antarctica. Monazite shows a variety of textures and compositions. In a garnet-sillimanite-orthopyroxene paragneiss at Mount Pardoe (Amundsen Bay), grains range 80–150 μm across and are anhedral; two grains are Th- and Si-dominant. In pods that crystallized from anatectic melts at 2500 Ma at Zircon Point, Casey Bay, monazite grains range 0.05 mm–1 cm in length and are highly variable in texture. The coarsest grains (>0.7 cm) are skeletal and euhedral, whereas the smallest grains are anhedral and associated with fine- to medium-grained quartz, K-feldspar, plagioclase, garnet, sillimanite and rutile in aggregates that form interstitial veinlets interpreted to be a second generation of anatexis during an event at 1100 Ma. The huttonite component (ThSiO4) reaches 30 mole% in the cores of the coarsest skeletal grains, whereas other grains, particularly smaller ones, show complex and irregular zoning in Th and U. The latter zoning is attributed to dissolution-reprecipitation, which also resulted in complete Pb loss during the 1100 Ma event. In the paragneiss at Mount Pardoe, K-feldspar and myrmekitic plagioclase (An16) are found in a 70–80 μm band between monazite and orthopyroxene and contain up to 12.7 wt.% and 2.7 wt.% PbO, respectively, corresponding to 18.5% and 3.4% PbAl2Si2O8 component, respectively. Cathodoluminescence of both feldspars increases with distance from a nearby monazite grain and is not correlated with Pb content. Incorporation of Pb in K-feldspar and plagioclase could be a result of diffusion, even though the monazite adjacent to feldspar apparently lost little Pb, i.e., Pb could have been transported by fluid from the Th-rich grains, which did lose Pb. In contrast to the paragneiss, cathodoluminescence correlates with Pb content of K-feldspar in aureoles surrounding skeletal monazite grains 0.7–1 cm across in anatectic pods at Zircon Point. Pb content of K-feldspar decreases monotonically to near detection limits within several millimetres of monazite grains; the greatest PbO concentration is attained in K-feldspar inliers and embayments in monazite, 8.8 wt.%, corresponding to 11.7% PbAl2Si2O8 component. Fine-grained quartz in the K-feldspar suggests that the mechanism for Pb incorporation involved breakdown of feldspar: Pb2+ + 2(K,Na)AlSi3O8 → PbAl2Si2O8 + 4SiO2 + 2(K,Na)+ . The smooth decrease of Pb in the aureoles is not characteristic of dissolution-reprecipitation, which is characterized by abrupt changes of composition, and it seems more likely that Pb was incorporated in K-feldspar by diffusion at 1100 Ma. We suggest a model whereby fluid introduced during the 1100 Ma event flowed along grain boundaries and penetrated mineral grains. Temperatures were sufficiently high, i.e., 700°C, assuming burial in the mid-crust, for the fluid to induce localized melting of quartzofeldspathic matrix of the anatectic pods. Loss of radiogenic Pb was complete. Some penetration of K-feldspar by aqueous fluid is suggested by the presence of scattered galena specks and by rays of turbidity emanating from monazite. Aqueous fluid or water-rich granitic melt may have mediated the diffusion of Pb in feldspar, but it did not cause dissolution-reprecipitation. Although Pb was mobilized by aqueous fluid or water-rich granitic melt, it was not entirely flushed from the immediate vicinity of the monazite, but nearly half was incorporated in adjacent feldspar. Fluid activity that could cause Pb loss in monazite does not always leave an obvious trace, i.e., hydrous minerals, such as sericite, are very sparse, and biotite is absent in the anatectic pods at Zircon Point. Nonetheless, electron microprobe dating of monazite from the pods could not detect the 2500 Ma age of original crystallization determined by isotopic dating.
Read full abstract