Lead powders with different morphologies, including corals, rods, wires, needles, ferns and dendritic forms, are prepared by electrodeposition onto a stainless steel substrate from different PbO-containing (10–60mM) choline chloride-urea deep eutectic solvent at cell voltage 2.5V and 343K for 2h. The electrochemical behavior of the PbO dissolved in this solvent is investigated with cyclic voltammetry. It is demonstrated that the increasing of PbO concentration makes the reduction potential EPb(II)/Pb shift positively and facilitates the electrodeposition of lead from PbO in the deep eutectic solvent. According to the analysis of the morphological and crystallographic characteristics of lead powders, the predominant origin of the growth layers is turned away from centre type towards the edge and corner types with the increase in PbO concentration. Due to the large number of growth centres at higher PbO concentration, fine and irregular grains are observed on the surface of formed particles which results in the development of primary and secondary branches in dendrites.
Read full abstract