Trypanosoma cruzi, which causes Chagas' disease, has been shown to cause polyclonal proliferation of lymphocytes after infection in vivo. This paper demonstrates that coculture of human PBMC with T. cruzi CL strain leads to proliferation of lymphocytes, which peaks on days 5 to 7 after infection. Approximately 15% of lymphocytes in culture undergo blast transformation. The proliferation of lymphoblasts can be measured by [3H]TdR incorporation, because the parasites incorporate little TdR. Parasites derived from autologous PBMC cultures or xenogeneic rat fibroblasts stimulate lymphocyte transformation similarly. By immunofluorescent cytometry, lymphoblasts from these cultures are 23 to 46% B cells (CD19+) and 39 to 64% T cells (CD3+), and approximately half of the T cells are CD4+ and half CD8+. A high percentage of lymphoblasts express MHC class II and IL-2R p55, suggesting both B and T lymphoblasts express these molecules. Anti-MHC class II and anti-IL-2R p55 mAb significantly inhibit the proliferative response of PBMC to T. cruzi. The mRNA for cytokines IL-1 beta, IL-2, IL-5, IL-6, IFN-gamma, and TNF-alpha are detected after T. cruzi coculture with PBMC, peaking on day 3. No IL-4 or IL-10 mRNA are detected. Large quantities of bioactive IL-1 and IL-6 are found in the supernatants of these PBMC. Monocytes, infected in the apparent absence of lymphocytes, assume activated morphology and accumulate mRNA for IL-1 beta, TNF-alpha, and IL-6. T cells require accessory cells to proliferate and produce cytokine mRNA. A trypsin-sensitive activity in lysates of T. cruzi stimulates lymphocyte proliferation. The data presented demonstrate that T. cruzi coculture with PBMC leads to lymphocyte proliferation, monocyte activation, and cytokine production.
Read full abstract