Fused Deposition Modeling (FDM) is a well-established manufacturing method for producing both prototype and functional components. This study investigates the mechanical properties of FDM components by material and process-related influencing variables. Tensile tests were conducted on seven different materials in their raw filament form, two of which were fiber-reinforced, to analyze their material-related influence. To cover a wide range from standard to advanced materials relevant for load-carrying components as well as their respective variations, polylactic acid (PLA), 30% wood-fiber-reinforced PLA, acrylonitrile butadiene styrene (ABS), polycarbonate (PC), a blend of ABS and PC, Nylon, and 30% glass-fiber-reinforced Nylon were selected. The process-related influencing variables were studied using the following process parameters: layer thickness, nozzle diameter, build orientation, nozzle temperature, infill density and pattern, and raster angle. The first test series revealed that the addition of wood fibers significantly worsened the mechanical behavior of PLA due to the lack of fiber bonding to the matrix and significant pore formation. The polymer blend of ABS and PC only showed improvements in stiffness. Significant strength and stiffness improvements were found by embedding glass fibers in Nylon, despite partially poor fiber-matrix bonding. The materials with the best properties were selected for the process parameter analysis. When examining the impact of layer thickness on part strength, a clear correlation was evident. Smaller layer thicknesses resulted in higher strength, while stiffness did not appear to be affected. Conversely, larger nozzle diameters and lower nozzle temperatures only positively impacted stiffness, with little effect on strength. The part orientation did alter the fracture behavior of the test specimens. Although an on-edge orientation resulted in higher stiffness, it failed at lower stresses. Higher infill densities and infill patterns aligned with the load direction led to the best mechanical results. The raster angle had a significant impact on the behavior of the printed bodies. An alternating raster angle resulted in lower strengths and stiffness compared to a unidirectional raster angle. However, it also caused significant stretching due to the rotation of the beads.
Read full abstract